A Dynamic Self-Structuring Neural Network Model to Combat Phishing

Fadi Thabtah
Applied Business
Nelson Marlborough Institute of Technology
New Zealand
Fadi.Fayez@nmit.ac.nz

Rami M. Mohammad
School of Computing and Engineering
University of Huddersfield
Huddersfield, UK
rami.mohammad@hud.ac.uk

Lee McCluskey
School of Computing and Engineering
University of Huddersfield
Huddersfield, UK
t.l.mccluskey@hud.ac.uk

Abstract—Creating a neural network based classification model is commonly accomplished using the trial and error technique. However, this technique has several difficulties in terms of time wasted and the availability of experts. In this article, an algorithm that simplifies structuring neural network classification models is proposed. The algorithm aims at creating a large enough structure to learn models from the training dataset that can be generalised on the testing dataset. Our algorithm dynamically tunes the structure parameters during the training phase aiming to derive accurate non-overfitting classifiers. The proposed algorithm has been applied to phishing website classification problem and it shows competitive results with respect to various evaluation measures such as harmonic mean (F1-score), precision, and classification accuracy.

Keywords- Classification, Neural Network, Phishing, Constructive pruning.

I. INTRODUCTION

Artificial Neural Network (ANN) has proved its merits in several classification domains [1]. Nevertheless, one downside of creating any neural network (NN) based classification model is that it is difficult to interpret its results, and it is considered to be a black-box. This characteristic has successfully applied in different security domains such as the work done in [2], [3], and [4]. Yet, we believe that this particular obstacle will add a positive edge to the domains where the results are more important than the understanding of how the model works, such as predicting phishing websites.

Although selecting a suitable number of hidden neurons and determining the value of some parameters, i.e. learning rate, momentum value and epoch size has been shown to be crucial when creating a NN model [5], there is no clear procedure for determining such parameters. Most model designers rely on trial and error to accomplish the task of tuning the parameters. However, the trial and error technique involves a painstaking process for many real world problems. In addition, the trial and error technique is a time-consuming process.

A poorly structured NN model may cause the model to underfit the training dataset [6]. On the other hand, exaggeration in restructuring the system to suit every single item in the training dataset may cause the system to be overfitted [7]. One possible solution to avoid the overfitting problem is by restructuring the NN model in terms of tuning some parameters, adding new neurons to the hidden layer or sometimes adding a new layer to the network. A NN with a small number of hidden neurons may not have a satisfactory representational power to model the complexity and diversity inherent in the data. On the other hand, networks with too many hidden neurons could overfit the data. However, at a certain stage the model can no longer be improved, therefore, the restructuring process should be terminated. Hence, an acceptable error rate should be specified when creating any NN model, which itself is considered a problem since it is difficult to determine the acceptable error rate a priori [6]. For instance, the model designer may set the acceptable error rate to a value that is unreachable which causes the model to stick in local minima [1] or sometimes the model designer may set the acceptable error rate to a value that can further be improved.

Overall, we believe that automating the structuring process of NN models is a timely issue and it might displace some of the burden from the system designer. However, automating structuring NN models does not merely mean adding new neuron(s) to the hidden layer because additional hidden neurons does not essentially mean that the accuracy will improve [8]. Hence, it is important to improve the NN performance by updating several parameters such as the learning rate before adding a new neuron to the hidden layer. Sadly, setting the learning rate is also a trial and error process. Although several studies have been conducted to come up with the best NN structure, the optimal learning rate value is still concealed.

II. DYNAMIC NEURAL NETWORK ALGORITHM

The pseudocode of the iSSNN algorithm is shown in Figure 1. Before training starts, the number of neurons in the input layer is set to the number of the features offered in the training dataset and the number of neurons in the output layer is set to one. The algorithm determines the number of neurons in the hidden layer. Initially, iSSNN creates simple NN structure that consists of only one neuron in the hidden layer and small non-zero arbitrary values are given to each connection weight. The learning rate commonly ranges from =0 to =1 as in [1] [10]. Following the default value of WEKA [11], the learning rate...
and momentum value are set to 0.3 and 0.2 respectively (lines 5-6). The initial desired error-rate (DER) is set to 50% and the user specifies the maximum number of epochs and the maximum number of allowed hidden neurons. Lastly, the training dataset is split into training, testing, and validation sets. The model is derived from the training dataset and evaluated on the test dataset. The validation set is utilised to validate the classifier.

Input
- Upload the minimal dataset and divide it to Training, Testing and Validation
- Integer \(T_r \) specifying the number of epochs
- Maximum number of possible hidden neurons

Output
- Optimal number of neurons in the hidden layer
- Optimal learning rate value
- Connection weights between input, hidden and output layers

Initialize
1. Number of neurons in the input layer = number of input features;
2. Number of neurons in the output layer = 1
3. Number of neurons in the hidden layer = 1;
4. Weights = random numbers ranging from -0.5 to +0.5;
5. Learning rate LR = 0.3;
6. momentum value = 0.2
7. Desired Error DER = 50%;

Start
8. Train the network to find the calculated error-rate CER;
9. \(W \ C E R < D E R \) then
10. A: Set DER <= CER;
11. Train the network;
12. Update the LR after each training epoch;
13. Check the early stopping condition;
14. If (DER Achieved & & iteration: \(T_r \)) then
15. Go to A;
16. Else 1
17. Add a new neuron to the hidden layer;
18. Train the network;
19. If (DER Achieved & & iteration< \(T_r \))
20. Go to A;
21. Else
22. Produce the Network;
23. }
24. Else (No Network can be produced)

Fig. 1 iSSNN pseudocode

Once all parameters have been set, the iSSNN algorithm computes the “calculated error-rate” (CER) according to equation (1). If the computed CER is less than the DER before reaching the maximum number of epochs, then the current structure can further be improved. Therefore, the algorithm resets the epoch, and assumes that the DER to be achieved in the next training phase is the CER. However, if the CER is larger than the DER, the process will be terminated (line 24).

In equation (1), \(A_k \) is the predicted value for example \(k \); and \(D_k \) is the real value linked with example \(k \) in the training dataset with \(n \) data examples.

\[
CER = \frac{1}{n} \sum_{k=0}^{n} (A_k - D_k)^2 \quad (1)
\]

1- Training Step
In this phase (line 10-13), the iSSNN algorithm continues training the network until the CER is less than the DER or the maximum number of epochs is reached or it achieves the early stopping condition. Each training epoch starts by updating the learning rate based on the CER achieved in the previous epoch. One of the simplest methods for updating the learning rate is the bold driver method [12]. After each training epoch, the algorithm compares the CER at time \(t \) with the CER at time \(t-1 \) and if the error has reduced, the learning rate is slightly increased by a specific ratio \(\varphi \) in order to accelerate the error-rate reduction process and converge as quickly to the candidate solution. In this case, the weights are updated. On the other hand, if the error has increased or has not changed, the iSSNN will minimise the learning rate by \(\varphi’ \) since a possible solution may be close, and there is a need to slow down. In this case, the weights are not updated.

Commonly, \(\varphi \) and \(\varphi’ \) are set to 0.1 and 0.5 respectively [6]. The reason that \(\varphi \) is smaller than \(\varphi’ \) is because a large step that causes the algorithm to converge from the possible solution is not desirable. However, as soon as the algorithm approaches a potential solution the learning rate is decreased.

2- Tuning Parameters Step
In the training phase, if the iSSNN obtains a CER less than the DER before reaching the maximum epoch, this could be an indication that the model can further be improved without

\[
\text{IF} \left \{ \begin{array}{lr} \varepsilon \leq \varepsilon' & \text{weights Saved} \\
\varepsilon > \varepsilon' & \text{weights not Saved} \\
\varepsilon \leq (1 + a) \cdot \varepsilon' & \text{Continue training} \\
\varepsilon > (1 + a) \cdot \varepsilon' & \text{Continue training} \\
\end{array} \right. \quad (2)
\]

Otherwise \rightarrow \text{Training terminated}
Adding any neurons to the hidden layer (line 14-15). Therefore, the iSSNN maintains the learning rate and weights achieved so far, resets the epoch, assumes that the DER to be achieved in the next training phase is the CER, and goes back to the Training Phase. Otherwise, the iSSNN goes to Adding a New Neuron Phase (line 16).

If the iSSNN cannot achieve the DER and reaches either the maximum allowed epoch or the early stopping condition, then, we can assume that the current structure has been squeezed to the limit and the network’s ability of processing the information is insufficient. Therefore, the algorithm will add a new neuron to the hidden layer (line 17). The algorithm connects the new neuron to all input and output neurons, assigns small non-zero value to its weight, maintains the learning rate and weights achieved so far, and resets the epoch. Yet, adding a new neuron to the hidden layer does not mean that this neuron is permanently added into the network, we must first assess whether the new neuron improves the network performance or not. Hence, the algorithm continues training the network (line 18).

If (after adding a new neuron) the DER is achieved, then the algorithm approves adding the new neuron, maintains the learning rate and weights, resets the epoch, assumes that the DER to be achieved in the next training phase is the CER, and goes back to the Training Phase (line 19-20). Otherwise, the algorithm moves to Producing the Final Network Phase (line 21). The main concern in this phase is that the number of hidden neurons can freely evolve resulting in a complicated structure. Thus, the algorithm allows the system designer to set the maximum number of hidden neurons.

3- Classifier Building Step

If adding a new neuron to the network does not improve the network performance, then the iSSNN removes the neuron, which was added last, resets the learning rate and the weights as they were before adding the new neuron, terminates the training process, and the final network is produced (line 22). The most obvious network parameters to evolve in the iSSNN algorithm are the learning rate, the weights, and the number of hidden neurons. TANH activation function has been used for the input layer, whereas, the bipolar hard limit activation function has been used for the hidden layer.

III. EVALUATING THE ISSNN ON PHISHING

Several experiments will be accomplished to evaluate the applicability of the ISSNN algorithm to phishing website classification problem. The experimental evaluation compares the iSSNN algorithm with Decision Tree (C4.5), Bayesian Network (BN), Logistic Regression (LR), and the traditional Feed Forward Neural Network (FFNN) algorithm implemented in WEKA [11]. FFNN algorithm assumes that the number of neurons in the input layers equals the number of attributes in the training dataset, whereas the number of neurons in the output layer equals the number of classes. The number of neurons in the hidden layer is the average number of neurons in the layers and is calculated as per equation (3).

\[
\text{#hidden neurons} = \frac{\text{#input neurons} + \text{#number of output neurons}}{\text{# of layers}} \tag{3}
\]

Other algorithms were selected because they use different strategies in producing classification models. For all these algorithms, we used the default parameter settings of WEKA [11]. Whereas, for iSSNN algorithm, two input values should be entered from the system designer, i.e. number of epochs and maximum number of possible hidden neurons. There is no rule of thumb in which one can decide on these values [1]. Therefore, following some recent studies which employ NN to create classification models in different domains [14] [15] [16], we set the maximum number of possible neurons to 10. Yet, these studies utilise different epoch sizes and the most commonly used epoch size values are 100, 200, 500, and 1000. Four sub-experiments will be conducted, in which the maximum number of possible hidden neurons is 10, and epoch size has been set to 100, 200, 500, and 1000 for experiments 1, 2, 3, and 4 respectively. The iSSNN algorithm has been implemented in Java. All experiments were conducted in a system with CPU Pentium Intel® CoreTM i5-2430M @ 2.40 GHz, RAM 4.00 GB. The platform is Windows 7 64-bit Operating System.

We have used the well-known phishing websites training dataset from the University of California Irvine repository (UCI) [17]. Table 1 shows the description of the training dataset, i.e. number of attributes, number of instances, and class distribution.

<table>
<thead>
<tr>
<th>Table 1 The phishing dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of attributes</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The dataset was collected recently by one of the authors of this article and published in UCI repository. Most of the dataset’s attributes are binary (0, 1) or ternary (0,1,-1). The dataset is categorized under classification in data mining since there is class label added (target attribute) that has two possible values (Phishy -1, Legitimate 1).

More details on the features names, types, possible values and descriptions are given in [17].

The iSSNN algorithm splits the training dataset into training, testing and validation datasets. The hold-out validation technique is used in our experiments. Thus, the dataset will be divided into 80% for training and 20% for testing. Moreover, when creating the iSSNN classifiers the training datasets will be further divided into 80% for training and 20% for validation.

<table>
<thead>
<tr>
<th>Table 2 Confusion Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Value</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>Negative</td>
</tr>
</tbody>
</table>

Four classification possibilities have been employed in our experiments as per confusion matrix shown in Table 2. Where True Positive (TP) is the number of legitimate websites correctly classified as legitimate, False Negative (FN) is the number of legitimate websites incorrectly classified as...
phishing, False Positive (FP) is the number of phishing websites incorrectly classified as legitimate and True Negative (TN) is the number of phishing websites correctly classified as phishing. Following previous studies related to phishing classification [18], [7], [19], [8], [20], [21], [22] and [23] we use a set of evaluation metrics that can be derived from the confusion matrix shown in Table 2. These evaluation metrics are as follows:

1. Precision (P): the rate of correctly classified legitimate websites in relation to all instances that are classified as legitimate and is calculated as per the equation 4.

\[
P = \frac{TP}{TP+FP}
\]

2. Recall (R): is equivalent to TPR (Sensitivity).

3. F1-score (Harmonic Mean): is the weighted average of P and R. F1-score takes both FP and FN into account and is calculated as per equation 5. This metric weights R and P equally, and a predictive classifier will maximise both P and R simultaneously. Thus, moderately good performance on both will be favoured over good performance on one and poor performance on the other.

\[
F1 = \frac{2PR}{P+R}
\]

4. Accuracy (ACC): the overall rate of correctly classified legitimate and phishing websites in relation to the total number of instances in the training dataset and is calculated as per equation 6.

\[
Acc = \frac{TP+TN}{TP+FP+TN+FN}
\]

IV. EXPERIMENTAL RESULTS

Three experiments have been done with the aim of evaluating the iSSNN algorithm and compare its results with other DM classification algorithms. Information Gain, Chi-Square, and Gain Ratio have been used in experiments 1, 2 and 3 respectively. These methods were selected because they are commonly used for feature selection in the domain of phishing classification [24], [25], [26], [22], [23]. The results are shown in Tables 3, 4, and 5.

From the results, we can see that the iSSNN outperforms the considered classification algorithms in most cases, particularly when the epoch size is set to 500. For instance, the average F1-score produced from the iSSNN using the Information Gain is higher than that produced from C4.5, BN, LR, and FFNN with margins of 0.66, 1.55%, 1.50%, and 0.16% respectively. In addition, the average F1-score produced from the iSSNN when using the Chi-Square also outperforms C4.5, BN, LR, and FFNN with margins of 0.82%, 1.46%, 1.43%, and 0.24% respectively. When using the same epoch size, the average F1-score produced from the iSSNN algorithm using the Gain Ration outperforms C4.5, BN, LR, and FFNN with margins of 0.50%, 1.16%, 0.96%, and 0.46% respectively.

Overall, the high F1-score yielded from the iSSNN reflects that the algorithm is able to derive classifiers that produce good FP and FN rates. That can be attributed to the well-structured NN classifiers derived from the iSSNN algorithm as a result of dynamic parameters tuning during the training phase. In general, the F1-score produced when using different feature selection methods reflects that the NN based algorithms derive better classifiers than other considered classification algorithms when applied to phishing datasets in the sense that the second best result achieved in all experiments was from the FFNN. However, the highest F1-score produced from the iSSNN was when using the Information Gain for feature selection at 92.30%. This value is higher than the values produced from Chi-Square and Gain Ration with margins of 0.16% and 0.45% respectively.

In terms of average accuracy using epoch size of 500, the iSSNN outperforms C4.5, BN, LR, and FFNN with margins of 0.79%, 1.38%, 1.39%, and 0.13% respectively when the Information Gain is used for preprocessing. In addition, the average accuracy produced from the iSSNN algorithm when using the Chi-square outperforms that of C4.5, BN, LR, and FFNN with margins of 0.87%, 1.34%, 1.36%, and 0.30% respectively. Furthermore, the iSSNN algorithm beats C4.5, BN, LR, and FFNN with margins of 0.53%, 0.97%, 0.88% and 0.39% respectively when using the Gain Ration. Overall, the high accuracies produced by the iSSNN algorithm when applying different feature selection methods are a sign that the training procedure in the iSSNN algorithm is able to produce well-structured NN classifiers. Yet the highest average accuracy produced from the iSSNN was when the Information Gain has been used for preprocessing at 93.06%. This value bypasses the results achieved from Chi-Square and Gain Ration with margins of 0.12% and 0.47% respectively.

In terms of average Recall, we find that the iSSNN algorithm has been outperformed twice by the C4.5 algorithm when applying Chi-Square and Gain Ration preprocessing methods.
with margins of 0.23% and 0.45% respectively when the epoch size is set to 500. However, when using the Information Gain as a filtering method, we find that the iSSNN outperforms the C4.5 with a margin of 0.08%. This difference is relatively small. However, a predictive classification model is the model that is able to maximize both Precision and Recall simultaneously. However, from the results, we find that although the average Recall produced from C4.5 outperforms that of the iSSNN when using Chi-Square and Gain Ration, the iSSNN algorithm outperforms the C4.5 in terms of average Precision with 2.04% and 1.45% when using Chi-Square and Gain Ration, respectively. Such results confirm that the iSSNN algorithm is able to derive classifiers that show a moderately good performance on both Precision and Recall. The same scenario also happens with FFNN, since the FFNN produced higher precision than the iSSNN with margins of 0.03% when using Chi-Square. However, the iSSNN produced higher Recalls than the FFNN with margins of 0.66% and 0.87% when applying Chi-Square and Gain Ration respectively.

Overall, the training procedure utilized when deriving NN classifiers using the iSSNN algorithm has proven to be effective in creating well-structured anti-phishing models in terms of number of hidden neurons and weights space.

V. CONCLUSIONS

In this article we proposed an improved self-structuring neural network algorithm that simplifies structuring NN classifiers. Several experiments have been accomplished to evaluate the applicability of the iSSNN on phishing website dataset. Three feature selection methods have been used in order to evaluate these methods and their effect on the performance of the iSSNN and other considered classification algorithms. The results show that the iSSNN algorithm outperformed the considered classification algorithms in most cases. The classifiers produced from the iSSNN have been shown to produce a moderately good performance on both Precision and Recall. However, the experimental results reveal that the Information Gain is more effective than other feature selection methods in improving the performance of the SSNN and other considered classification algorithms. In general, the experimental results show that the iSSNN algorithm is able to produce good NN classifiers.

References

